

#### Experiment 1.1

We will examine forward active mode of BJT transistor in this experiment. In case of  $V_{\mbox{\tiny BE}}$  > 0 and

 $V_{BC}$  < 0 , collector current will be;

$$I_C \cong I_S e^{V_{BE}/V_T}$$
$$I_C = \beta_F I_B$$

In order to obtain these 2 characteristics, set up the common emitter configuration in Figure 1.  $V_c$  will be 5V and  $R_3$  will be short circuit. BJT transistor is **BC238** and the model file of this transistor is at end of the Experiment 1.2. Fill the Table 1 by changing  $R_1$  value. Sweep  $R_1$  from 1k ohm to 1M ohm.

Different  $I_B$  and/or  $V_{BE}$  values can be obtained by changing  $R_1$  resistance in the circuit. Write your measurement result to Table 1. Then draw the graphics in Figure 2 which shows us relationship between  $I_C - V_{BE}$  and  $I_C - I_B$ . You can draw graphs by using Excel.

**Note:** You can vary the "resistor" value in LTSpice to use it as a potentiometer.



Figure 1: Common emitter configuration



| R <sub>1</sub> | V <sub>BE</sub> | Ι <sub>c</sub> | I <sub>B</sub> | β |
|----------------|-----------------|----------------|----------------|---|
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |
|                |                 |                |                |   |

### Table 1: Measurement results of experiment 1.1







# **Experiment 1.2**

In this experiment we will examine the comparison between forward active mode and saturation mode of BJT transistor. For forward active mode you can choose an average value from R<sub>1</sub> values from Table 1 and write measurement results for this R<sub>1</sub> to Table 2.

For reverse active mode, switch the collector and the emitter and repeat the measurements.

For saturation mode, make  $R_1$  short circuit and connect  $R_3$  as 1k ohm. Thus the transistor will enter saturation point ( $V_{CB} < 0$ ). Write your results to Table 2.

| R <sub>1</sub> =    | VBE | Vce | Ів | lc | β |
|---------------------|-----|-----|----|----|---|
| Forward active mode |     |     |    |    |   |
| Reverse active mode |     |     |    |    |   |
| Saturation          |     |     |    |    |   |

#### Table 2: forward active, reverse active and saturation mode

## **Experiment 2.3**

Setup the common source configuration in Figure 3. Choose  $V_G$  as 10V, and  $V_D$  as 5V. Simulate the circuit by decreasing  $R_2$  value starting from 100 k $\Omega$ . Fill in Table 3. Draw the  $I_D - V_{GS}$  curve in Figure 4. Indicate the value of  $V_{th}$  in the  $I_D - V_{GS}$  curve roughly.





Figure 3: Common source configuration

| V <sub>GS</sub> | ID |
|-----------------|----|
|                 |    |
|                 |    |
|                 |    |
|                 |    |
|                 |    |
|                 |    |
|                 |    |
|                 |    |
|                 |    |
|                 |    |
|                 |    |

| Table | 3: | Vcs | $-I_{r}$ | va   | lues | of | Expe | erim | ent  | 1.  | .3 |
|-------|----|-----|----------|------|------|----|------|------|------|-----|----|
| Tubic | э. | GS  | /        | ) vu | lacs | 0. | LAP  |      | CIIC | ÷., |    |



Figure 4:  $I_D - V_{GS}$  curve

## **Experiment 2.4**

Choose  $V_G$  as 5V and  $R_2$  as 100k $\Omega$  in Figure 3. Since  $R_2$  is constant,  $V_{GS}$  remains constant. Sweep  $V_D$  value from 0V to 10V and draw  $I_D - V_{DS}$  curve in Figure 5. Indicate different operation regions in  $I_D - V_{GS}$  curve. Fill in Table 4.

| V <sub>DS</sub> | Ι <sub>D</sub> |
|-----------------|----------------|
|                 |                |
|                 |                |
|                 |                |
|                 |                |
|                 |                |
|                 |                |
|                 |                |
|                 |                |
|                 |                |
|                 |                |
|                 |                |

| Table 4: $V_{\rm DS} - I_{\rm D}$ | values of Experiment 1.4              |
|-----------------------------------|---------------------------------------|
|                                   | · · · · · · · · · · · · · · · · · · · |







Figure 5:  $I_D - V_{DS}$  curve

(Datasheets for BC238 and CD4007n are available in the internet)